

CAIE Chemistry A-level

36: Organic Synthesis (A-level only)

Notes

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Synthetic Routes

Synthetic routes are the routes which can be used to produce a **certain product from a starting organic compound**. It is important that you understand the different methods and **conditions** required to convert compounds to other products.

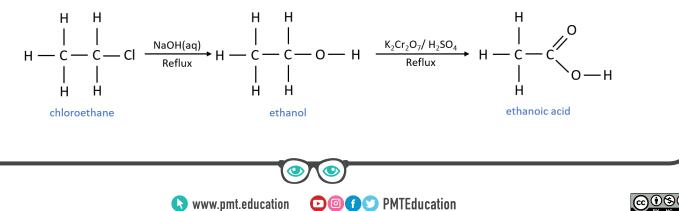
Below is a table showing the typical reactions of different functional groups and how they can be identified. This table contains both reactions from AS and the A2 course.

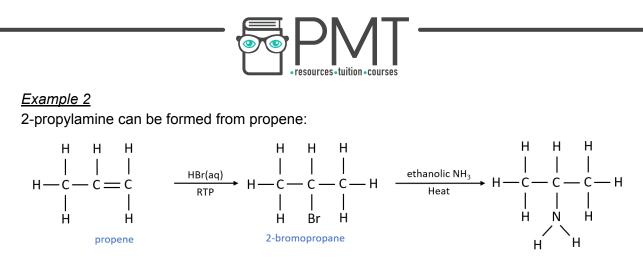
Homologous series	Typical reactions	Identification
Alkanes	Combustion	
C-C	Electrophilic substitution/ free radical substitution with Br ₂ or Cl ₂ (forms haloalkanes) <i>Cracking</i> (forms short chain alkenes and alkanes)	
Alkenes C=C	Electrophilic addition: - Steam (forms alcohols) - Hydrogen halides (forms haloalkanes) - Halogens (forms dihaloalkanes) - Hydrogen (forms alkanes)	React with bromine water: Decolorises in the presence of C=C.
	<i>Oxidation</i> with H⁺/MnO₄⁻ (forms diols)	
	Addition polymerisation (forms polymers)	
	Combustion	
Halogenoalkanes C-F/ C-Cl/ C-Br/ C-I	Nucleophilic substitution: - Hydrolysis (forms alcohols) - Reaction with ethanolic cyanide (forms nitriles) - Reaction with ammonia (forms primary	React with AgNO ₃ (aq), test precipitate with NH ₃ (aq): AgCl - white ppt soluble in dilute NH ₃ (aq) AgBr - cream ppt soluble in
	amines) Elimination of hydrogen halide using ethanolic hydroxide ions (forms alkenes)	concentrated NH ₃ (aq) AgI - yellow ppt insoluble in NH ₃ (aq)
Alcohols -OH	<i>Combustion</i> <i>Substitution</i> with hydrogen halides, sulfur dichloride oxide or phosphorus(III) halides (forms haloalkanes)	React with H ⁺ /Cr ₂ O ₇ ²⁻ : Colour change from orange to green in the presence of primary and secondary
	Ethanol and sodium (forms sodium ethoxide and hydrogen gas)	alcohols (no change for tertiary alcohols)
	<i>Oxidation</i> with H ⁺ /Cr ₂ O ₇ ²⁻ (forms carbonyls and carboxylic acids)	
	Dehydration using an acid catalyst (forms alkenes)	
	Esterification with carboxylic acids or acyl chlorides	

Aldehydes -CHO	Oxidation with H⁺/Cr₂O7 ² (forms carboxylic acids) <i>Reduction</i> using NaBH₄ or LiAlH₄ (forms primary alcohols) <i>Nucleophilic addition</i> with HCN (forms hydroxynitriles)	React with 2,4-DNPH: A yellow-orange precipitate is formed in the presence of a carbonyl group. React with Tollens' reagent: A silver mirror is produced if an aldehyde is present. React with Fehling's reagent: The blue solution forms a brick red precipitate in the presence of an aldehyde React with acidified potassium dichromate(VI): Orange solution turns green
Ketones RCOR'	Reduction using NaBH ₄ or LiAIH ₄ (forms secondary alcohols) Nucleophilic addition with HCN (forms hydroxynitriles)	React with 2,4-DNPH : A yellow-orange precipitate is formed in the presence of a carbonyl group.
Carboxylic acids -COOH	Reaction with metals, alkalis or carbonates (forms a salt and inorganic products) <i>Esterification</i> with alcohols <i>Reduction</i> with LiAlH ₄ (forms alcohols) Reaction with SOCl ₂ (forms acyl chlorides, sulfur dioxide and hydrochloric acid)	Test pH: pH less than 7 when measured using a pH probe React with a carbonate: effervescence as CO ₂ is formed
	Reaction with phosphorus(V) chloride or phosphorus(III) chloride (forms acyl chlorides) <i>Oxidation</i> of methanoic acid using Fehling's or Tollens' (forms carbon dioxide and water) <i>Oxidation</i> of ethanedioic acid using acidified potassium manganate(VII) (forms water and carbon dioxide)	
Esters RCOOR'	Acid hydrolysis (forms a carboxylic acid and an alcohol) Alkali hydrolysis (forms a carboxylate salt and an alcohol)	
Amines -NH ₂	Reaction with acids (forms a salt)	
Nitriles C≡N	<i>Acid hydrolysis</i> (forms a carboxylic acid and a salt) <i>Alkali hydrolysis</i> (forms a carboxylate salt and ammonia)	

<u>_</u>

▶ Image: Second Second


_		
Arenes -C ₆ H₅	 Electrophilic substitution: Halogen (forms chlorobenzene with Cl₂ and 	
	bromobenzene with Br ₂)	
	- Nitration (forms nitrobenzene)	
	Friedel-Crafts acylation and alkylation	
	Oxidation of a side chain (forms benzoic acid)	
	Hydrogenation (forms cyclohexane)	
Phenol	Reactions with strong bases (not acidic enough to	
C₅H₅OH	react with carbonates)	
	Reaction with sodium (forms sodium phenoxide and	
	hydrogen gas)	
	Reaction with diazonium salts (forms azo compounds)	
	Electrophilic substitution:	
	 Nitration using HNO₃ (forms nitrophenol) 	
	- Bromination using Br ₂ (forms bromophenol)	
Acyl chlorides	<i>Hydrolysis</i> with water (forms carboxylic acids and HCI)	
-COCI	<i>Hydrolysis</i> with sodium hydroxide (forms a carboxylate salt and water)	
	Esterification with alcohols or phenol	
	Reaction with ammonia (forms an amide and HCI)	
	Reactions with primary amines (forms an	
	N-substituted amide)	
Amides	Acid hydrolysis (forms a carboxylic acid and	
-CONH ₂	ammonium ions)	
	Alkali hydrolysis (forms a carboxylate salt and	
	ammonia or an amine)	
	Reduction using LiAIH ₄ (forms a primary amine)	


Multi-Stage Synthesis

Some organic molecules can be prepared using a **multi-stage synthesis**. Typically, this involves two stages: reactant \rightarrow intermediate \rightarrow product. It can cover more stages.

<u>Example 1</u>

Below is a diagram showing how ethanoic acid can be formed from chloroethane:

2-propylamine

Analysing Synthetic Routes

When **synthesising** an organic compound, several factors are considered before deciding which synthetic route to use:

- **Type of reaction** addition reactions are more sustainable than substitution or elimination reactions as there are no waste products.
- **Reagents** renewable reagents with few safety concerns are preferred.
- **By-products** less harmful by-products are favoured as there would be fewer safety and environmental concerns. If the by-products can be used in another industry, the process is more sustainable.
- Conditions choose the reaction with the most energy efficient and safe conditions.

▶ Image: PMTEducation

